NACE Corpus Christi Section Lunch & Learn January 16,2019 Fundamentals of Internal Corrosion

Tom Pickthall EnhanceCo, Incorporated

Corrosion Principles

Corrosion Circuit

- Anode
- Cathode
- Metallic Path
- Electrolyte

Corrosion Circuit

- Eliminate one part of the circuit and corrosion stops.
- Anode More anodic (CP), CRA's
- Cathode Coating , inhibitor film, CRA's
- Metallic Path Use non-metallics
- Electrolyte Get rid of water, use inhibitors & coatings

Acid Gasses Carbon Dioxide (CO₂)

- CO₂ forms a weak acid that attacks metal
- Often takes the form of "Mesa" pitting type attack

* ppCO₂ = ((System CO₂ Volume %) X (System Pressure + Atmospheric Pressure))/100

Estimation: ppm $O_2 = 10 - 0.555$ (X°F - 30°F), where X°F is the water temperature

Acid Gasses Hydrogen Sulfide (H₂S)

- Has characteristic "rotten egg" smell
- Oreates a black deposit FeS
- Osually a shallow dishtype attack, but may have pitting
- OH₂S forms a weak acid that attacks metal
- Osually has etching in the bottom of the pits

Courtesy- Corrosion of Oil and Gas Well Equipment, API cc 1958

Acid Gasses Oxygen (O₂)

- Strong depolarizer
- Forms deep pits
- Usually found in surface equipment where air has entry point
- Can greatly accelerate other corrosive agents

Effect of O₂ on Sour Corrosion With and Without Inhibitor

Acid Gas Corrosion Rates

Acid Gas "Worry Levels"

Sweet

Any amount of CO_2 with 5 ppm or less H_2S

Sour

Any amount of CO_2 with 10 ppm or more H_2S

Oxygen Assisted

Any amount of CO_2 and/or H₂S with 10 -20 ppb or more O_2

* Levels relative to measurements made on fresh samples.

Reality

Uphill and Downhill Multiphase Flow: Inclination Effects on Flow Regime

Terrain Slugging Development

Downhill Stratification Development

Water Water Stratification in Low Spots

Galvanic Corrosion Brass and Steel

Corrosion Coupons

- ADVANTAGES
- Easy to Use
- Allows Examination
- If located properly, very representative of system
- Inexpensive

- DISADVANTAGES
- Long time needed to collect data
- Time consuming
- If not located properly
 NOT representative of system

Rod Coupons

Corrosion Coupon 2

Bacteria Monitoring

- Planktonic
 - Serial Dilution
 - Rapid Check
- Sessile
 - Serial Dilution
 - "Robbins Device"
 - Screen
 - Swabs

Serial Dilution Vials

Electrical Resistance Probes

Linear Polarization Resistance Probes

Pipeline Monitor

Remember

RUST
NEVER
RESTS

References

<u>Corrosion Control in Petroleum Production</u>

– Byars, Harry, NACE International, 2nd Edition

- <u>Microbiologically Influenced Corrosion</u> <u>Handbook</u>
 - Susan Watkins Borenstein, Woodhead Publishing
- <u>Applied Water Technology</u> C. Patton, Campbell Petroleum Series, Norman OK
- Oilfield Water Technology

 M. Davies, PJB Scott, NACE Press
- <u>Pipeline Rules of Thumb</u>
 - E.W. McAllister, Gulf Publishing Co., Houston TX